Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Developers in open source projects must make decisions on contributions from other community members, such as whether or not to accept a pull request. However, secondary factors—beyond the code itself—can influence those decisions. For example, signals from GitHub profiles, such as a number of followers, activity, names, or gender can also be considered when developers make decisions. In this paper, we examine how developers use these signals (or not) when making decisions about code contributions. To evaluate this question, we evaluate how signals related to perceived gender identity and code quality influenced decisions on accepting pull requests. Unlike previous work, we analyze this decision process with data collected from an eye-tracker. We analyzed differences in what signals developers said are important for themselves versus what signals they actually used to make decisions about others. We found that after the code snippet (x=57%), the second place programmers spent their time fixating on supplemental technical signals(x=32%), such as previous contributions and popular repositories. Diverging from what participants reported themselves, we also found that programmers fixated on social signals more than recalled.more » « less
-
Compilers primarily give feedback about problems to developers through the use of error messages. Unfortunately, developers routinely find these messages to be confusing and unhelpful. In this paper, we postulate that because error messages present poor explanations, theories of explanation---such as Toulmin's model of argument---can be applied to improve their quality. To understand how compilers should present explanations to developers, we conducted a comparative evaluation with 68 professional software developers and an empirical study of compiler error messages found in Stack Overflow questions across seven different programming languages. Our findings suggest that, given a pair of error messages, developers significantly prefer the error message that employs proper argument structure over a deficient argument structure when neither offers a resolution---but will accept a deficient argument structure if it provides a resolution to the problem. Human-authored explanations on Stack Overflow converge to one of the three argument structures: those that provide a resolution to the error, simple arguments, and extended arguments that provide additional evidence for the problem. Finally, we contribute three practical design principles to inform the design and evaluation of compiler error messages.more » « less
An official website of the United States government

Full Text Available